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Abstract — It is well-known that a finite axiomatization of Zermelo-Fraenkel
set theory (ZF) is not possible in the same first-order language. In this note we
show that a finite axiomatization is possible if we extent the language of ZF with
the new logical concept of ‘universal quantification over a family of variables in-
dexed in an arbitrary set X’. We axiomatically introduce Finitely Axiomatized
Set Theory (FAST), which consists of eleven theorems of ZF plus a new con-
structive axiom called the family set axiom (FAM); the latter is a generalization
of the pair axiom of ZF, and uses the new concept of quantification. We prove
that FAM enables to derive the axioms schemes of separation and substitution
of ZF from FAST. The conclusions are (i) that FAST is a finite, nonstandard
first-order theory, and (ii) that FAST implies ZF.

1 Introduction

The most widely accepted foundational theory for mathematics is Zermelo-Fraenkel
set theory (ZF). While a detailed exposition can be found in the literature, e.g. [1],
let’s recall that ZF contains seven axioms plus two infinite axiom schemes: the seven
axioms are the Extensionality Axiom (EXT), the Empty Set Axiom (EMPTY), the
Pair Axiom (PAIR), the Sumset Axiom (SUM), the Powerset Axiom (POW), the
Infinite Set Axiom (INF), and the Axiom of Regularity (REG); the two axiom schemes
are the Separation Axiom Scheme (SEP) and the Substitution Axiom Scheme (SUB).
Altogether, ZF is thus an infinitely axiomatized theory; in addition to that, a well-
known theorem of Montague states that a finite axiomatization of ZF is not possible
in the language of ZF without assuming extra objects, cf. [2].

As an alternative to ZF, several theories have been suggested that can be finitely
axiomatized. No attempt will be made to give a complete overview hic et nunc, but
examples of such finitely axiomatized alternatives are Von Neumann-Gödel-Bernays
set theory (NGB), cf. [3], and Cantor-Von Neumann set theory (CVN), cf. [4]. These
two theories, however, either depart from the ontology of ZF or use nonconstructive
axioms1: NGB uses classes and CVN starts with an axiom stating that there is a set
including all sets. Alternative theories will not be discussed: the purpose of this note
is purely to show that, while retaining the adage “everything is a set” of ZF, a finite
axiomatization of set theory is possible with a new constructive axiom which uses
a new concept of universal quantification.

∗e-mail: Marcoen.Cabbolet@vub.ac.be
1A constructive axiom is an axiom that, when certain things are given (e.g. one or two sets or

a set and a predicate), states the existence of a uniquely determined other set [5].
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The key idea is rather simple and can be explained as follows. In the language
of ZF, we can easily formalize the idea of quantification over an n-tuple of variables
ranging over sets. This yields well-known expressions like

∀u1, u2, . . . , unΦ (1)

which can be read as: for any n-tuple of sets u1, u2, . . . , un, Φ. Such expressions are
defined in the language of ZF by the postulate of meaning

∀u1, u2, . . . , unΦ⇔ ∀u1∀u2 . . . ∀unΦ (2)

Conceptually we can view quantification over an n-tuple of variables u1, u2, . . . , un
as quantification over a family of variables ui indexed in the finite set {1, 2, . . . , n},
denoted by (ui)i∈{1,2,...,n}. The point is, however, that in the language of ZF it is not
possible to quantify over an infinite family, because the right-hand side of (2) has to
be a finite formula. The key idea is then to remove this restriction, and to generalize
the idea formalized in (1) into quantification over a family of variables indexed in an
arbitrary set X; for a given set X, this yields an expression like

∀(ui)i∈XΦ (3)

This has to be read as: for any family of sets ui indexed in X, Φ. However, no
postulate of meaning such as expression (2) can be given, since the set X may be
infinite: the quantification over a family of sets ui indexed in a set X is thus a
primitive concept, which has no equivalent in the language of ZF.

It is emphasized that conceptually, quantification over a family of variables
∀(ui)i∈X . . . does not entail a departure of the ontology of ZF: we can thus consider
quantification (3) without assuming new objects. In ZF the situation is similar; e.g.
in PAIR—when formalized as an expression of the type ∀x1, x2Ψ using definition (2)
above—one considers quantification over a two-tuple of variables x1 and x2 without
viewing the two-tuple as a new object in itself.

The next section introduces Finitely Axiomatized Set Theory (FAST) axiomati-
cally; the final section demonstrates that FAST implies ZF by deriving the schemes
SEP and SUB from FAST, and presents the conclusions.

2 Axiomatic introduction of FAST

The universe of discourse is the universe of sets—all terms are sets. Regarding the
formal language, the following three clauses have to be added to the definition of the
syntax of the language of ZF:

• for every constant x, we have variables ax, bx, . . . ranging over sets; here the
subscript x is the label;

• we have generic variables ai, bj , . . . of which the subscripts are the label; by an
interpretation of the label i as a constant x, a generic variable ui becomes a
variable ux ranging over sets as above.

• if Φ is a formula, ui is a generic variable, and X is a term, then ∀(ui)i∈XΦ is a
formula.

As said, the formula ∀(ui)i∈XΦ has to be read as: for any family of sets ui indexed
in X, Φ. A quantification ∀(ui)i∈X . . . has thus to be seen as a simultaneous quan-
tification over all those variables ux of which the label is a constant of the set X.
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Proceeding with the axioms of FAST, the first ten axioms are the following theo-
rems of ZF (formalization omitted):

(i) Axiom of Extensionality (EXT): Two sets X and Y are identical if they have
the same elements.

(ii) Empty Set Axiom (EMPTY): There exists a set X = ∅ who has no elements.

(iii) Sum Set Axiom (SUM): For every set X there exists a set Y =
⋃
X made up

of the elements of the elements of X.

(iv) Powerset Axiom (POW): For every set X there is a set Y = P(X) made up
of the subsets of X.

(v) Infinite Set Axiom (INF): There exists a set that has the empty set as element,
as well as the successor {x} of each element x.

(vi) Axiom of Regularity (REG): Every nonempty set X contains an element Y
that has no elements in common with X.

(vii) Difference Set Axiom (DIFF): For every pair of sets X and Y there is a set
Z = X − Y such that the elements of Z are precisely those elements of X that
do not occur in Y .

(viii) Product Set Axiom (PROD): For any two nonempty sets X and Y there is
a set Z = X × Y made up of all ordered two-tuples2 〈x, y〉 of which x is an
element of X and y an element of Y .

(ix) Image Set Axiom (IM): For any function f on3 a set X, there is a set Z = f [X]
made up of precisely those elements y, for which there is an element x ∈ X such
that 〈x, y〉 ∈ f .

(x) Reverse Image Set Axiom (REV): For any function f on a set X and for
any element y, there is a set Z = f−1(y) made up of precisely those x ∈ X such
that 〈x, y〉 ∈ f .

We have then arrived at the key axiom of FAST; in the next section we show that
this generalization of ZF’s PAIR is so powerful, that the infinite axiom schemes SEP
and SUB of ZF can be derived from FAST.

Axiom 2.1. Family Set Axiom (FAM):
∀X∀(ui)i∈X∃Z∀y(y ∈ Z ⇔ ∃i ∈ X(y = ui))

Axiom 2.1 guarantees that for any nonempty set X and for any family of sets ui
indexed in X there is a set Z made up of precisely the family of sets ui. On account
of EXT the set Z is unique, and can be denoted by Z = {ui|i ∈ X}.

The point is this: suppose we have, for a given constant (set) X, constructed a
uniquely determined set ux for every constant x ∈ X. That is, suppose we have
constructed a family of sets (ui)i∈X. Then we have not yet constructed the set that
contains this family of sets indexed in X, (ui)i∈X, as elements. But FAM then guar-
antees that this set exists—regardless how this family of sets (ui)i∈X is constructed!

2A two-tuple 〈x, y〉 is a set: 〈x, y〉 := {x, {x, y}}.
3A function f on a set X is a set f made up of precisely one two-tuple 〈x, y〉 for every element

x ∈ X. Every element g of a function space Y X is thus a function on X.
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With the above, all non-logical axioms of FAST have been introduced. However,
since quantification over a family of variables indexed in a set X is a new concept in
logic, at least the logical axioms for the elimination of the quantifiers from FAM must
be given to derive theorems. The two required axioms are straightforward:

Axiom 2.2. First Elimination Axiom (EL1):
∀X∀(ui)i∈X∃Z∀y(y ∈ Z ⇔ ∃i ∈ X(y = ui))⇒

∀(ui)i∈X∃Z∀y(y ∈ Z ⇔ ∃i ∈ X(y = ui)) for any constant X

Axiom 2.3. Second Elimination Axiom (EL2):
∀(ui)i∈X∃Z∀y(y ∈ Z ⇔ ∃i ∈ X(y = ui))⇒ ∃Z∀y(y ∈ Z ⇔ ∃i ∈ X(y = ui))

for any family of constants (ui)i∈X

The following example then demonstrates how PAIR of ZF follows from of FAM.

Example 2.4. By universal quantifier elimination EL1 the following expression,
which is a theorem of FAST, follows from axiom 2.1 for the case X = {1, 2}:

∀(ui)i∈{1,2}∃Z∀y(y ∈ Z ⇔ ∃i ∈ {1, 2}(y = ui)) (4)

So suppose that we have constructed two sets, X1 and X2. In other words: suppose
we have constructed a family of sets (Xi)i∈{1,2}. Then we do not have them in a set
yet. None of the first eleven axioms of FAST can put these Xi’s in a set; however, on
account of logical axiom EL2 we now derive from theorem (4):

∃Z∀y(y ∈ Z ⇔ ∃i ∈ {1, 2}(y = Xi)) (5)

Of course, formula (5) is equivalent to ∃Z∀y(y ∈ Z ⇔ y = X1 ∨ y = X2), so theorem
(4) is then equivalent to PAIR of ZF: ∀u1∀u2∃Z∀y(y ∈ Z ⇔ y = u1 ∨ y = u2).

This concludes the axiomatic introduction of FAST. We proceed with its discussion
in the next section.

3 Discussion and conclusions

In this section we will first derive the infinite schemes SEP and SUB of ZF from
FAST. After that, we address the main concern about consistency of the theory. In
the remainder of the text, we will, for functions f , use the notation f : x 7→ y for
〈x, y〉 ∈ f .

Theorem 3.1. Main Theorem of FAST:
If there is a functional relation Φ(x, y) that relates every x of a nonempty set X to
precisely one y, then there is a function f on X that maps every x ∈ X to precisely
that y for which Φ(x, y). In a formula:

∀X(∀x ∈ X∃!yΦ(x, y)⇒ ∃f∀x ∈ X∃!y(f : x 7→ y ⇔ Φ(x, y)))

Proof. Suppose for every x ∈ X we have precisely one y such that Φ(x, y). Thus, on
account of PROD, there is a set ux = {〈x, y〉} = {x} × {y} for every x ∈ X; here the
singletons {x} and {y} exist on account of FAM, and y is the element that is in the
functional relation Φ(x, y). On account of FAM, there is then a set Z = {ux|x ∈ X}.
On account of SUM, there is then a set f =

⋃
{ux|x ∈ X}. This set f is the requested

function f on X.
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Theorem 3.1 is an infinite scheme, with one formula for every functional relation Φ.
The point is this: if we have constructed a functional relation Φ(x, y) that holds for
every x ∈ X, then we have not yet constructed the (functional) set f containing the
two-tuples of the related x’s and y’s. But this theorem guarantees that this set f
exists. So, the practical meaning is this: in the framework of FAST, giving a function
prescription is constructing a set.

We are now ready to derive the infinite axiom scheme SEP of ZF from the axioms of
FAST. For that matter, we have to prove that the following theorem holds for any
formula Φ:

Theorem 3.2. Separation Axiom Scheme of ZF:
∀X∃Y ∀z(z ∈ Y ⇔ z ∈ X ∧ Φ(z))

Proof. Let the function τ on X be defined by

{
τ : x 7→ 1 if Φ(x)
τ : x 7→ 0 if ¬Φ(x)

. On account

of Theorem 3.1, this function τ exists. On account of REV, the reverse image set
τ−1(1) then exists. This is precisely the set Y requested.

We proceed by deriving the infinite axiom scheme SUB of ZF from the axioms of
FAST. For that matter, we have to prove that the following theorem holds for any
set X and for any functional relation Φ:

Theorem 3.3. Substitution Axiom Scheme of ZF:
∀x ∈ X∃!yΦ(x, y)⇒ ∃Z∀u(u ∈ Z ⇔ ∃v(v ∈ X ∧ Φ(v, u)))

Proof. Suppose for every x ∈ X we have precisely one y such that Φ(x, y). Then on
account of Theorem 3.1, there is a function τ on X given by the function prescription
τ : x 7→ y ⇔ Φ(x, y). Thus, on account of IM, there is an image set τ [X]: this is
precisely the set Z of theorem 3.3.

It is herewith proven that the axiom schemes SEP and SUB from ZF follow from
FAST. We proceed by addressing the main concern regarding inconsistency, which is
that the existence of a set of all sets can be derived from FAST. For that matter, we
first prove that the Löwenheim-Skolem theorem does not hold for FAST.

Proposition 3.4.
If FAST has a model M, then M is uncountable.

Proof. Suppose FAST has a model M, and M is countable. That means that there
are only countably many subsets of N = {0, 1, 2, . . .} in M, and that the powerset
P(N) in M contains those subsets: we thus assume that there are subsets of N that
are “missing” inM. Let A be any subset of N that is not inM, and let h ∈ A. Since
all numbers 0, 1, 2, . . . are in M, we have the variables u0, u1, u2, . . . according to the
syntax of our language (see Sect. 2). Since N is in M, we get on account of FAM
and the logical axiom EL1 that the formula ∀(ui)i∈N∃Z∀y(y ∈ Z ⇔ ∃i ∈ N(y = ui))
holds inM. It should be realized that this is a universal quantification over countably
many variables, all ranging over all constants in M. An instantiation is thus that,
for a constant n ∈ N, to a variable un the constant value un is assigned, such that
un = n if n ∈ A and un = h if n 6∈ A. Then on account of the logical axiom EL2
there is a set Z = {un|n ∈ N} in M that is made up of precisely that family of sets
(ui)i∈N. But Z is precisely the set A, so A is in M, contrary to what was assumed.
Ergo, if FAST has a model, it is uncountable.
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The second worry is then that the universe of FAST itself contains a set of all sets.
That, however, is not the case because FAST contains the Axiom of Regularity. The
point is that one must first have a set X before one can construct a family of sets
indexed in X: the set X has to be a regular set, and therefore FAM doesn’t allow the
construction of a set of all sets. We can prove that formally as a theorem:

Theorem 3.5.
∀X∀(ui)i∈X¬∃Z(Z = {ui|i ∈ X} ∧ ∀y(y ∈ Z))

Proof. Suppose there is a regular set X, such that the entire universe of sets can be
seen as a family of sets ui indexed in X. That is, suppose there is a regular set X
and a family of sets (ui)i∈X , such that the set Z of that family of sets is the universe
of sets. Since we then have ∀y(y ∈ Z), we then have in particular Z ∈ Z. But that is
not possible on account of REG. Thus, there is no such regular set X.

In the foregoing we have shown that every nonlogical axiom of ZF is a theorem of
FAST. That means that every set, which can be constructed with ZF, can also be
constructed with FAST: the first conclusion is then that FAST implies ZF. There is
then the obvious risk that FAST is not (relatively) consistent, but in any case we have
proven that FAST doesn’t allow the construction of a set of all sets.

The concept of universal quantification over a family of variables indexed in an
arbitrary set X in axiom 2.1 means a departure from the language of ZF, but on the
other hand there is no higher-order quantification: the second conclusion is then that
FAST is a nonstandard first-order theory. Currently only axioms for the elimination
of the quantifiers from FAM have been given: this suffices for the deduction of the-
orems from FAST, necessary for the construction of sets. Further research may be
directed further expanding the framework by formalizing axioms for the introduction
of universal quantification over a family of variables indexed in a set X: such would
allow the formulation of new theorems from FAST.

The cost-benefit analysis is this: the benefit is that FAST is a finite theory, which
preserves the ontology of ZF, and which, besides EXT and the existential axioms
EMPTY and INF, only has constructive axioms; the cost is that FAST because of
its family set axiom entails a departure from the language of ZF. But as the latter
merely means that set theory is then no longer a strict application of standard first-
order logic, we say that the benefit exceeds the cost. That is, we conclude that FAST,
because of its finiteness, is more elegant than ZF.

A Appendix: on second-order semantics

The objection to FAST has been raised, that it uses second-order semantics. In this
appendix we argue, however, that it doesn’t.

Consider the axiom PAIR of ZF, which we formulate using the abbreviation (2):

∀x1, x2∃y∀z(z ∈ y ⇔ z = x1 ∨ z = x2) (6)

No one would claim that this requires second-order semantics. There are also infinitely
many theorems of ZF, one for every integer n > 2, that can be proven using PAIR:

∀x1, . . . , xn∃y∀z(z ∈ y ⇔ z = x1 ∨ . . . ∨ z = xn) (7)

No one would claim that any of these requires second-order semantics either.
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Now we use the definition of the syntax as given in Sect. 2. With the first ten axioms
(i)/(x) we can construct numbers 0 and 1, e.g. by defining 0 := ∅ and 1 := P(∅) = {∅},
as well as the set {0, 1}, since {0, 1} = P(1). The syntax thus says that we now have
variables x0 and x1 ranging over sets. We now consider the following expression:

∀(uj)j∈{0,1}∃Z∀y(y ∈ Z ⇔ ∃j ∈ {0, 1}(y = uj)) (8)

This is a theorem of FAM by EL1, but we view it in itself: consider the axiom system
consisting of the axioms (i)/(x) mentioned in Sect. 2 plus formula (8). The latter is
absolutely equivalent to PAIR, formula (6), so no one will claim that expression (8)
or the axiom system requires second-order semantics. Likewise, no one would claim
that any of the expressions

∀(xj)j∈{1,...,n}∃Z∀y(y ∈ Z ⇔ ∃j ∈ {0, . . . n}(y = xj)) (9)

requires second-order semantics, as they are equivalent to theorems (7) of ZF. We
now merely extend this to a countable infinity of variables:

∀(xj)j∈N∃Z∀y(y ∈ Z ⇔ ∃j ∈ N(y = xj)) (10)

with N := {0, 1, 2, . . .} which is assumed to exist—cf. INF, axiom (v). In ZF this
would already require a formula of infinite length, which is not permitted. But does
formula (10) require second-order semantics? No, is doesn’t: it requires as much
second-order semantics as PAIR, which is none at all. And now we generalize this
idea even further:

∀X∀(xj)j∈X∃Z∀y(y ∈ Z ⇔ ∃j ∈ X(y = xj)) (11)

This is FAM. Does this, then, require second–order semantics? No: formula (8) is
equivalent to PAIR and thus doesn’t use second-order semantics, and in none of the
steps from (8) to (9) to (10) to (11) have we changed anything in the semantics, or
introduced second-order semantics, or anything like that. Ergo, FAM doesn’t use
second-order semantics.

FAST is a matter of pure formalism. Starting with FAM, we get theorems by applying
EL1: for each assignment of a value X to the variable X, we get theorems

∀(uj)j∈X∃Z∀y(y ∈ Z ⇔ ∃j ∈ X(y = uj)) (12)

From there we get theorems by applying EL2: for each assignment of a value ux to
any of the variables ux with x ∈ X we get theorems

∃Z∀y(y ∈ Z ⇔ ∃j ∈ X(y = uj)) (13)

These are existential axioms of sets Z. This only uses first-order semantics: we
have used nothing but FAM, the logical elimination axioms EL1 and EL2, and the
assignment of a value to a variable as in first-order logic. If we talk about semantics,
then let’s compare it to PAIR of ZF. PAIR merely means that for every assignment
of constant values to variables x1 and x2, there is a set that contains these constants.
FAM merely means that for every assignment of a constant value ux to any variable
ux with a label x ∈ X, there is, for any such set X, a set that contains these constants.
No second-order semantic here.
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